金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

平面向量解题要点与实际应用

来源:学大教育     时间:2014-04-26 17:08:50


在学习数学平面向量的过程中,一些好的试题会为自己的平面向量学习提供很好地帮助,是自己更好的应战高考,是自己在高考中取得优异的成绩,所以,今天,就为大家提供以下的平面向量解题要点与实际应用:

一、基本计算类:

1.已知-=(1,2),-=(-3,2),若(k-+-)⊥(--3-)则k=_______,

若(k-+-)//(--3-),则k=____

答案:19,--。公式基本应用,无需解释。

2.已知向量-=(cos,sin),向量-=(2-,-1)则|3---|的最大值为解:(3a-b)2=(3cosθ-2-,3sinθ+1)(3cosθ-2-,3sinθ+1)

=(3cosθ-2-)2+(3sinθ+1)2

=9cos2θ-12-cosθ+8+9sin2θ+1+6sinθ

=18+6sinθ-12-cosθ

≤18+-=18+18=36

∴|3a-b|max=6

点评:本题虽然是道小的综合题,但是向量中的升次技巧还是十分突出的,“见模平方”已是很多老师介绍给同学的一大法宝。不过升次的另外一种途径,就是同时点乘向量。

二、向量与三角知识综合:

3.设-=(1+cos,sin),-=(1-cos,sin),-=(1,0),∈(0,),∈(,2)-,-的夹角为θ1,-,-的夹角为θ2,且θ1-θ2=-,求sin-的值。

解:-·■=1+cos

-·■=1-cos

|-|2=2+2cos=4cos2-|-|2=2-2cos=4sin2-|-|=1

∵-∈(0,-)-∈(-,)

∴|-|=2cos-|-|=2sin-

又-·■=|-||-|cosθ1

∴1+cos=2cos-cosθ1

2cos2-=2cos-·cosθ1

∴cosθ1=cos-∴θ1=-

同理-·■=|-||-|cosθ2

∴sin-=cosθ2

∴cos(---)=cosθ2

∴---=θ2

∴θ1-θ2=-+-=-

∴-=--

∴sin-=--

三、向量与函数、不等式知识综合:

4.已知平面向量-=(-,1),-=(-,-),若存在不同时为零的实数k,t,使-=-+(t2-3)-,-=-k-+t-,且-⊥-.(1)试求函数关系式k=f(t);(2)求使f(t)>0的t的取值范围.

解:(1)由题知-·■=0,|-|2=4|-|2=1

-·■=-k-2+t-·■+t(t3-3)-2-k(t2-3)-·■=-4k+t(t2-3)=0

∴k=-(t3-3t)即f(t)=-(t3-3t)

(2)f’(t)=-(3t2-3)=-(t2-1)

-

令f(t)=0∴t1=0t2=--t3=-

由图可知

t∈(--,0)∪(-,+∞)

四、用向量的知识解决三角形四边形中的问题。(与平面几何的交汇是近几年考试的热点)

温馨提示:据以下问题,同学们可以归纳一些常见结论,如与内心、外心、垂心、重心、中线、角分线、高线、共线、垂直等相关的结论。

5.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足-=-+(-+-)·∈(0,+∞)。则P的轨迹一定通过△ABC的()

A.外心B.内心

C.重心D.垂心

答案:B

6.设平面内有四个互异的点A,B,C,D,已知(---)与(-+--2-)的内积等于零,则△ABC的形状为()

(A)直角三角形

(B)等腰三角形

(C)等腰直角三角形

(D)等边三角形

答案:B

解:-+--2-=(---)+(---)=-+-

又---=-

∴-·(-+-)=0

∴等腰三角形

7.已知-A=-,-C=-,-C=-且满足(---)·■=0(>0),则△ABC为()

A.等边三角形B.等腰三角形

C.直角三角形D.不确定

解:式子的含义就是角分线与高线合一。故选B。

8.若平面四边形ABCD满足-+-=-,(---)·■=0,则该四边形一定是

A.直角梯形B.矩形

C.菱形D.正方形

答案为C。第一个条件告诉我们这是平行四边形,而第二个条件则说明对角线互相垂直。

五、向量与解析几何的综合:

9.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若-+-+-=0,

解:由-+-+-=0可知,F为三角形ABC的重心,故xg=-,而|-|+|-|+|-|=xA+xB+xC+3-故原式值为6。

10.已知A、B、D三点不在一条直线上,且A(-2,0),B(2,0)|-|=2,-=-(-+-)求E点的轨迹方程;

解:(1)设E(x,y),-=-+-,则四边形ABCD为平行四边形,而-=-(-+-)E为AC的中点

∴OE为△ABD的中位线

∴|-|=-|-|=1

∴E点的轨迹方程是:x2+y2=1(y≠0)

点评:本题正是关注了向量几何意义得以实现运算简化。

11.设椭圆方程为x2+-=1,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足-=-(-+-),点N的坐标为(-,-),当l绕点M旋转时,求:

(1)动点P的轨迹方程;

(2)|-|的最小值与最大值.

(1)解:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2)在椭圆上,所以x12+-=1④x22+-=1⑤

④—⑤得x12-x22+-(y12-y22)=0,所以(x1-x2)(x1+x2)+-(y1-y2)(y1+y2)=0

当x1≠x2时,有x1+x2+-(y1+y2)·■=0⑥

-

将⑦代入⑥并整理得4x2+y2-y=0⑧

当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)

也满足⑧,所以点P的轨迹方程为-+-=1

(2)解:由点P的轨迹方程知x2≤-,即--≤x≤-。

所以|-|2=(x--)2+(y--)2=(x--)2+--4x2=-3(x+-)2+-……10分

故当x=-,|-|取得最小值,最小值为-;当x=--时,|-|取得最大值,

最大值为-。

点评:本题突出向量的坐标运算与解析几何求轨迹方法的结合,以及二次函数求最值问题。

12.在△ABC中,-=-,-=-又E点在BC边上,且满足3-=2-,以A,B为焦点的双曲线过C,E两点,(1)求此双曲线方程,(2)设P是此双曲线上任意一点,过A点作APB的平分线的垂线,垂足为M,求M点轨迹方程。

解:本题只解第一问,在这里向量的应用是很有新意的。

(1)以线段AB中点O为原点,直线AB为x轴建立直角坐标系,设A(-1,0)B(1,0)作CO⊥AB于D

由已知-=-

∴|-|cosA=-

∴|-|=-

又同理-=-

∴|-|=-

设双曲线---=1(a>0,b>0)C(--,h)E(x1,y1)

∵3-=2-

-

E,C在双曲线上

-

∴双曲线为7x2--y2=1

数学中的平面向量是高考的热点,也是学习的难点,所以,一些好的真题会为我们的学习提供很好地帮助,是自己更好的应战高考,并在高考中取得优异的成绩,所以,上面有关的平面向量解题要点与实际应用,大家要好好的利用。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956